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Abstract

Recently, a generalized Coulomb law for elastic bodies in contact has been developed by the author, which assumes

that the tangential traction is the difference of the slip stress of the contact and the stick area, whereby each stick area

corresponds to a smaller contact area. It holds for multiple contact regions also. Several applications for elastic half

planes, half spaces, thin and thick layers and impact problems have been published. For plane contact of equal bodies

with friction, it provides exact solutions, and the interior stress field can be expressed with analytical results in closed

form. In this article, a singular superposition of flat punch solutions is outlined, in which the punches are aligned with

an edge of the contact area. It is shown that this superposition satisfies Coulomb’s inequalities directly, and new results

for the Muskhelishvili potentials of several profiles are presented. It is illustrated how problems of singularity and multi-

valuedness of complex functions can be solved in closed form, and the Chebyshev approximation used by earlier au-

thors can be avoided. For comparison, some previous solutions for symmetric profiles are appended. Some results for

the interior stress field, the pressure, the frictional traction and the surface displacements are compared with FEM

solutions of an equivalent problem. The small differences between both methods show characteristic features of the

FEM model and the theoretical assumptions, and are shortly explained. Further, this example can be used as

benchmark test for FEM and BEM programs. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Coulomb’s law for rigid bodies assumes that if the frictional force be less than a certain amount the
bodies do not move. In Contact Mechanics, on the other hand, the bodies are flexible and Coulomb’s law is
used locally for the stress. When the stress–displacement relations in normal and tangential direction are
similar and uncoupled, a normal pressure increment produces the same displacements as a frictional
traction increment in tangential direction, and the tangential traction can be written as the difference of the
full slip traction of the contact area and the stick area. Each stick area is a smaller contact area or a unique
combination of multiple contact areas. The force–displacement relations can be calculated by integration of
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the pressure. This result is independent of the mathematical form of the normal contact law on the con-
dition of linear elastic materials in advancing contact (J€aager, 2000). The expression advancing contact
means that the whole contact area increases with the force (Gladwell, 1980) and the condition of linear
elastic materials allows the superposition of stress distributions. Optional load histories can be written as a
superposition of unidirectional displacement increments. This generalized Coulomb model is exact for
equal half planes, axisymmetric half spaces and thin layers (J€aager, 1995, 1997a, 1999a). The elastic friction
model was also adopted by other researchers (J€aager, 1999b, 2001a). The literature references in this article
illustrate the diversity of the method and are not necessary for the understanding of the results. All im-
portant equations are listed and a summary of results for different punches is appended at the end.

In this article, the elastic Coulomb law is applied to a flat rounded punch in contact with an elastic plane
and compared with FEM results. A FEM analysis of the Hertz contact problem with friction has been
published in Chandrasekaran et al. (1987). Recently, several publications appeared on simplified contact
laws. A torque–displacement relation for elliptical contact in torsion by Cuttino and Dow (1997) has been
discussed by J€aager (1997b). In another paper, it has been suggested to apply simplified force–displacement
relations to granular flow simulations by Zhang and Vu-Quoc (2000), and a comparison of tangential
force–displacement relations was published by Vu-Quoc and Zhang (1999a). The same authors presented
an elastoplastic force–displacement relation with a displacement-driven version in Vu-Quoc and Zhang
(1999b) and a force-driven version in Vu-Quoc et al. (2000). More publications can be found in a review on
FEM approaches (Mackerle, 1998). The elastic friction law presented in this article cannot be applied to
elastic dissimilarity, where the normal and tangential stress–displacement relations are coupled. Contact
problems with coupled equations, different contact laws in normal and tangential direction and plastic
materials etc, violate the basic assumptions. A simplified model can simulate some typical effects, but it
should never be used in the wrong context. It is possible, however, to use the elastic friction law as a general
principle for simplified design and parameter studies in machine construction. When some assumptions are
violated, worst case scenarios or limiting cases can be used for error estimations. General equations for
plates and beams and a survey on solutions for elastic dissimilarity can be found in the book by Gladwell
(1980).

The surface displacements ux and uz of equal half planes under the surface loading q, p in x- and z-
direction, respectively, can be written as integral of point force displacements (J€aager, 1997a)
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The symbols G1 and m1 denote the shear modulus and Poisson’s ratio of body 1, respectively, and the index
2 characterizes values of body 2. The formula for j2 can be obtained after substitution of the index 1 with 2
in Eq. (2). It has been explained (J€aager, 1997a) that Eqs. (1) are also exact for a rigid punch in contact with
an incompressible elastic half plane (plane strain, G2 ¼ 1, m1 ¼ 0:5).

2. Singular superposition of flat punch solutions

The surface displacements for a singular superposition of flat punches have been presented by J€aager
(1998), based on the solution for a flat punch with two square edges at the ends of the contact area at x ¼ 0
and a. The pressure pða; xÞ, the normal displacement uzða; xÞ, and the complex Muskhelishvili potential
/pða;wÞ for a flat punch with two square edges in contact on 0 < x < a have the form (J€aager, 1998)
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Eq. (4) shows that the displacements are non-singular, in contrast to the point force solution of the
integrand in Eq. (1). Therefore, it is possible to avoid the singular integrals, using a superposition of dif-
ferential flat punches instead of point forces. Several types of superposition are possible, but the resulting
integral equations cannot always be solved analytically. Solutions have been published for complete con-
tact, when the punches are aligned with the center of the contact area (J€aager, 1995), and an edge of the
contact area (J€aager, 1998). The pressure and the Muskhelishvili potential of the latter have the form
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Eq. (6) shows that the integrand of the pressure has a weak singularity at x ¼ s, which can easily be
integrated. Further, the pressure has a singularity of the order x�1=2 at x ¼ 0. The displacement at the point
x ! �0 of the elastic plane has a vertical slope, which requires a square edge at the origin (Fig. 1). The
contact condition for a punch with the profile z1ðxÞ is illustrated in Fig. 1

uzða; xÞ
¼ uzða; 0Þ � z1ðxÞ; for x6 a; contact
> uzða; 0Þ � z1ðxÞ; for xP a; separation

�
ð7Þ

Superposition of displacements (4) and insertion in Eq. (7) gives an integral equation for the differential
forces p0ðsÞ

Fig. 1. Flat punch with square edge and rounding.
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Eq. (9) is an Abel integral equation and can be inverted
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The partial derivative o=os in Eqs. (9) and (10) can also be written as absolute derivative d/ds, because
the geometrical and material parameters are constant. The contact condition pða; xÞ > 0 for the pressure in
the contact area holds for the increments dpða; xÞ also, and from Eq. (6) follows p0ðsÞ > 0 as a necessary
condition for contact. Eq. (9) on the other hand shows that for the case 0 < p0ðsÞ < 1 the slope must be
positive: 1 > z01ðxÞ > 0 and vice versa. This means that for profiles with a finite slope z01ðxÞ > 0 the in-
equality pða; xÞ > 0 is always satisfied. For z01ðxÞ ¼ 0, a rigid body motion in form of a flat punch solution
can be superposed. Such a general proof cannot be given for the condition of separation (7), which must be
checked separately for each profile.

3. Tangential solution

The integral equations in tangential direction (1) are the same as in normal direction and the normal
solution can be used for the tangential problem. For simplicity, values of the stick area x < a� < a will be
denoted with asterisk �, e.g. p� ¼ pða�; xÞ, in the equations below. It can easily be shown that the pressure
difference p � p� satisfies the stick condition, which is a constant shift of the stick area (J€aager, 1997a). Thus
we obtain the tangential traction q, the force Q and the tangential displacement ux

q ¼ f ðp � p�Þ; Q ¼ f ðP � P �Þ; ux ¼ fjðuz � u�z Þ ð11Þ

with Coulomb’s coefficient of friction f. Coulomb’s inequality in the stick area

q ¼ f ðp � p�Þ < fp; in the stick area ð12Þ

is always satisfied, because the contact condition for each increment dp > 0 yields p > p�.
The second inequality of Coulomb’s law requires that the slip velocity dst=dt must be opposite to the

tangential traction q ¼ f ðp � p�Þ. For constant normal pressure p and decreasing stick areas da� < 0,
the tangential traction increment dq ¼ f dp� > 0 at a constant position x depends on the stick radius a�.
The pressure increment dq is a flat punch solution (J€aager, 1998, Section 2ii). The corresponding slip in-
crement dstða�; xÞ is the difference of the elastic displacement duxða�; xÞ and the rigid body displacement
dnða�Þ ¼ duxða�; 0Þ of the stick area

dstða�; xÞ ¼ duxða�; xÞ � duxða�; 0Þ ¼ fj½duzða�; xÞ � duzða�; 0Þ
; ð13Þ

where Eq. (11) was used. Eq. (4) shows that the slip dstða�; xÞ must be negative, and opposite to the traction
q, as required by Coulomb’s slip inequality. In the case of general load histories, this proof holds also for a
superposition of displacement increments. When finite increments are used, as usual in numerical me-
chanics, it can be shown that Coulomb’s inequality is identical with the condition of separation for the
normal problem. The differential formulation (13) is more general, and can be used in the same form for
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torsion of axisymmetric surfaces (J€aager, 1995). Thus, the validity of Coulomb’s inequalities is a direct
consequence of the method of superposition of flat rigid punches.

4. Singular flat punch with a rounded edge

In a series of publications (Ciavarella et al., 1998a,b), a Chebyshev expansion has been used for the
Muskhelishvili potential of a symmetric flat rounded punch, and a wedge with rounded tip. This potential is
useful for the interior stress field, and a simple analytical solution in closed form is derived below. The
mentioned publications have been discussed in J€aager (1999b, 2001a). For the special case of a singular flat
punch with a rounded edge (Fig. 1), which has a square edge at the origin and a rounding at the other
contact end, the gap z1ðrÞ between the surfaces in undeformed contact has the form

z1ðxÞ ¼ H
x
b

� � ðx� bÞ2

2Rc
; for 06 x6 a; HðxÞ ¼ 0; x < 1

1; xP 1

�
ð14Þ

Insertion of Eq. (14) in Eq. (10) gives
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The pressure pða; xÞ in Eq. (6) can be evaluated with Eq. (15)
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The normal force is the integral of differential forces p0ðsÞ

P1ðxÞ ¼
Z a

s¼0

p0ðsÞds ¼ 2ARc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bða� bÞ

p 3

2
a

�(
� b
�
þ 3

2
a2 � 2ba arccos

ffiffiffi
b
a

r )
ð17Þ

with the coordinates x and z. The Muskhelishvili potential /P1 can be calculated by insertion of Eq. (15) in
Eq. (6) (Appendix A.1)
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In Muskhelishvili’s definition the z-axis points outside of the body. The derivative o/P1=ow is necessary for
the stress calculation
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The displacement uzða; xÞ follows from Eq. (4), similar as Eq. (8)

uzða; xÞ ¼ uzða; 0Þ �
A
p

Z F

s¼0

p0ðsÞds; F ¼ minðx; aÞ: ð20Þ
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Eq. (20) can be integrated numerically. The Muskhelishvili potential for the tangential loading alone has
been derived in (J€aager, 1997a)

/qða; a�;wÞ ¼ if /pða;wÞ
�

� /pða�;wÞ
�
: ð21Þ

The total potential for normal and tangential loading is

/totalða; a�;wÞ ¼ ð1þ if Þ/pða;wÞ � if/pða�;wÞ: ð22Þ

5. Superposition of punches

The profile z2 of a wedge with rounded tip (Fig. 2) can be written as the difference of a Hertzian profile
and a flat rounded punch z1 given by Eq. (14)

z2ðxÞ ¼
x2

2Rc
� z1ðxÞ: ð23Þ

The profile z2ðxÞ of the rounded wedge is parabolical for x < b and has a constant slope for b < x < a. In
linear elasticity, solutions can be superposed linearly, and it is not necessary to calculate a new solution for
this case. The Hertzian result is the special case b ¼ 0 in Eqs. (14)–(22). As example, the pressure for a
wedge with rounded tip in Fig. 2 is the difference of Eq. (16) with b ¼ 0 and the same term with b > 0.

pARcp2ða; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
a� x
x

r
p
2
ðaþ 2xÞ � pARcp1ða; xÞ: ð24Þ

The solution for a symmetric flat punch with rounded edges (Fig. 3) can be written as symmetric su-
perposition of two singular punches p1ða; xÞ þ p1ða; a� xÞ defined by Eq. (16). A derivation of the solution
for the mirrored punch p1ða; a� xÞ is outlined in Appendix A.4. This superposition generates symmetric

Fig. 2. Rounded wedge.

Fig. 3. Flat rounded punch.
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singularities at the edges, which can be eliminated by subtraction of a flat punch with two square edges,
given by Eq. (3), with

p03 ¼ lim
x!0

fp
ffiffiffiffiffi
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� 2bÞ arccos
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Numerical comparison shows that Eq. (26) is identical with Schubert’s formula (20) and (21) in Schubert
(1942). The solutions (26) and (27) for a symmetric flat rounded punch (Fig. 3) have been derived with an
alternative symmetric superposition method in J€aager (2001b). A non-symmetric superposition of two
punches with the flat regions b1 and b2 in Fig. 1 is straightforward, i.e. the limit

p
xp1ða; b1; xÞ for x ! 0

must be identical with the limit
pða� xÞp1ða; b2; a� xÞ for x ! a. This gives a non-linear equation for b2

and b1, as a function of the contact length a, such that a flat punch with two square edges (3) can be
subtracted. It is necessary that the punches have complete contact on the whole contact area and that both
singularities are equivalent. The resulting punch of this superposition has a flat region of the length
b ¼ b1 þ b2 � a, such that the dependent variables b1 and b2 can be eliminated for a given contact length a.
More profiles are presented in Appendix A.1 and A.2, which can be used for similar superpositions.
Consideration of limiting cases and numerical calculations as below can be helpful for the verification of
new solutions.

6. Interior stress field

The von Mises stress ra can be expressed in terms of the strain energy due to distortion (J€aager, 1997a)

r2
a ¼ r2

x þ r2
y þ r2

z � ðrxry þ ryrz þ rxrzÞ þ 3ðs2
xy þ s2yz þ s2

xzÞ:
Plane stress : ry ¼ sxy ¼ syz ¼ 0;
Plane strain : ry ¼ mðrx þ rzÞ; sxy ¼ syz ¼ 0:

ð28Þ

The stress components can be written as a function of the Muskhelishvili potential

c1 ¼ 1
2
ðrx þ rzÞ ¼ /ðwÞ þ /ðwÞ;

d1 ¼ 1
2
ðrz � rx þ 2isxzÞ ¼ ðw� wÞ/0ðwÞ þ /ðwÞ � /ðwÞ:

ð29Þ

The bar denotes conjugate complex values. Insertion of Eq. (29) in Eq. (28) gives

r2
a ¼

c21 þ 3d1d1; for plane stress

ð1� 2mÞ2c21 þ 3d1d1; for plane strain

�
ð30Þ

The complex functions can easily be evaluated with mathematical software packages, and an example for
Mathematica has been presented in (J€aager, 1997a).

7. Comparison with FEM

The solutions (26) and (27) for a symmetric flat rounded punch have been compared with a FEM
calculation at the conference Contact Mechanics V by J€aager (2001b), and are shortly summarized in this
section. Fig. 4 illustrates the FEM model, which was solved with ANSYS 5.5. Rigid elements TARGE169
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are used to represent the rigid punch with the semi-axis c=2 ¼ 5 mm of the flat region and the rounding
radius Rc ¼ 80 mm. A circular region of the half plane is modeled with 2-D elements PLANE42 and is fixed
radially at RG ¼ 50 mm. The x-axis of the half plane represents the contact surface and consists of
CONTA171 elements, which are associated with the target elements. The half plane has a modulus of
Elasticity E ¼ 1000 N/mm2, Poisson’s ratio m ¼ 0:4999 � 0:5 and a coefficient of friction f ¼ 0:5. The
normal force is applied in steps 1–3, calculated as superposition of Eq. (17) for the semi-axes a=2 ¼ f5:4,
5.8, 6.2g of the contact area. Four increments are used for each step. After normal loading, a tangential
force is applied in steps 4–6, with the values a�=2 ¼ f5:8, 5.4, 0g for the semi-axis of the stick area. With
these values, the normal solution can directly be inserted in Eqs. (11) for the tangential problem, e.g. as the
traction: q ¼ f ðpða; xÞ � pða�; xÞÞ (Fig. 5).

A comparison between the normal pressure of ANSYS (markers) and the analytical result (full line) is
shown in Fig. 6. The difference between both methods is very small. The vertical slope of the pressure

Fig. 4. FEM mesh.

Fig. 5. Model of the contact region.
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opða; xÞ=ox ¼ 1 at the positions x ¼ a=2 and x ¼ c=2 is very typical for a discontinuous variation of the
curvature. The difference between the theoretical and numerical tractions of steps 4–6 in Fig. 7 is larger.
Small oscillations are visible in the diagram, which depend on the discretization of the FEM mesh, and may
be a consequence of the Lagrange method. Another difference is a small asymmetry in the traction, which
results from the shift of the stick area. This is clearly visible for the frictional traction marked with crosses
for a�=2 ¼ 5:4, where the tip of the traction is larger on the left side. The reason of this discrepancy is the
analytical assumption of an undeformed contact surface, which neglects the geometrical non-linearity
produced by the moving stick zone.

The interior stress field of the numerical (Fig. 8) and analytical solution (Fig. 9) is illustrated for step 5 in
the regime of partial slip ða�=2 ¼ 5:4Þ. The maximum and the form of the contours are the same for both
methods, but the discrete FEM mesh produces some corners in the contours. The interior stress field differs
characteristically from the classical Hertz solution, because the stress concentrations appear at the dis-
continuities of the curvature. This effect is important for non-Hertzian surfaces with discontinuous cur-
vatures.

Finally, the numerical (markers) and analytical (full line) tangential surface displacements are compared
in Fig. 10. The tangential displacement was fixed at the end of the x-axis x ¼ RG ¼ 50 mm. It can be seen
that the displacements agree very well.

It may be concluded that for small displacements the FEM model agrees very well with the theory, as
long as the geometrical and material non-linearities can be neglected.

Fig. 6. Pressure for steps 1–3.

Fig. 7. Surface traction for steps 4–6.

J. J€aager / International Journal of Solids and Structures 39 (2002) 959–972 967



Appendix A

A.1. Muskhelishvili potential for a singular flat punch with rounding

The arccos term in Eqs. (5) and (15) can be eliminated using integration by parts.

4pARc
ffiffiffiffi
w

p
/pða;wÞ ¼ 2i

ffiffiffiffiffiffiffiffiffiffiffiffi
w� a

p
ð2b� 2w� aÞ arccos

ffiffiffi
b
a

r
þ i

ffiffiffi
b

p Z a

s¼b

2s2 � sðbþ wÞ þ 2wðw� bÞ
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� bÞðw� sÞ

p ds

ðA:1Þ

Fig. 8. Ansys solution for step 5.

Fig. 9. Analytical solution for step 5.
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The first two terms of the integrand (A.1) are

i
ffiffiffi
b

p Z a

s¼b

2s2 � sðbþ wÞ
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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bða� bÞðw� aÞ

p
: ðA:2Þ

The following substitution of the last term of the integrand gives Eq. (18)

z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðs� bÞ
sða� bÞ

s
: ðA:3Þ

A.2. Polynomial punch with a singular edge

We shortly summarize the solution for a polynomial profile with a singular edge (J€aager, 1998), and
include a new formula for the Muskhelishvili potential (Fig. 11)

zðxÞ ¼ Aaxa; ðA:4Þ

p0ðsÞ ¼
ffiffiffi
p

p
aAaCða þ 0:5Þ
ACðaÞ sa�1; ðA:5Þ

P ðaÞ ¼
ffiffiffi
p

p
Cða þ 0:5Þ
ACðaÞ zðaÞ; ðA:6Þ

Fig. 10. Surface displacements ux.

Fig. 11. Polynomial punch with edge.
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pða; xÞ ¼ P ðaÞ 2a
pa

ffiffiffiffiffiffiffiffiffiffiffi
a� x
x

r
F 1; 1

�
� a;

3

2
;
a� x
x

�
; 06 x6 a: ðA:7Þ

/pða;wÞ ¼
iP ðaÞ
2pw

F a;
1

2
; a

�
þ 1;

a
w

�
: ðA:8Þ

o/pða;wÞ
ow

¼ �iPðaÞ
2pw2

F a;
1

2
; a

�
þ 1;

a
w

�
þ iaP ðaÞa

4pw3ða þ 1Þ F a

�
þ 1;

3

2
; a þ 2;

a
w

�
: ðA:9Þ

A.3. Symmetric polynomial punch

The solution for a symmetric polynomial punch (J€aager, 1995) is summarized for comparison.

zðxÞ ¼ Aaxa; ðA:10Þ

p0ðsÞ ¼
aP ðaÞ
aa

sa�1; ðA:11Þ

P ðaÞ ¼ 2
ffiffiffi
p

p
C ða þ 1Þ=2ð Þ
AC a=2ð Þ zðaÞ; ðA:12Þ

pða; xÞ ¼ P ðaÞ a
pa

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

r
F 1;

2� a
2

;
3

2
; 1

�
� x2

a2

�
; 06 x6 a: ðA:13Þ

/pða;wÞ ¼
iP ðaÞ
2pw

F
a
2
;
1

2
;
a þ 2

2
;
a2

w2

� �
: ðA:14Þ

o/pða;wÞ
ow

¼ �iPðaÞ
2pw2

F
a
2
;
3

2
;
a þ 2

2
;
a2

w2

� �
: ðA:15Þ

The Muskhelishvili potential for a symmetric wedge with a sharp edge (a ¼ 1 in Fig. 12) has the form (J€aager
1995)

/pða;wÞ ¼
iP ðaÞ
2pa

arcsin
a
w

� �
;

o/pða;wÞ
ow

¼ �iP ðaÞ
2pw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � a2

p : ðA:16Þ

Fig. 12. Symmetric punch.
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A.4. Mirrored flat punch with rounding and singularity

The solution for a flat punch in contact on s < x < a follows fromEqs. (3)–(5) after substitution of (Fig. 13)

xnew ¼ xþ snew; anew ¼ aþ snew: ðA:17Þ

Insertion of Eq. (A.17) in Eq. (4) and omission of the index new gives the displacement outside of the
contact area

uz2ða; xÞ ¼ uz2ða; aÞ �
A
p
p02ðsÞ ln

2x� s� aj j
a� s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2x� s� aÞ2

ða� sÞ2
� 1

s !
; x6 s or xP a: ðA:18Þ

The flat punch solutions can be superposed analogously to Section 2. The gap z2 must be the integral of the
displacement increments before the point x makes contact

z2ða; xÞ ¼
A
p

Z a

s¼x
p02ðsÞ ln

aþ s� 2x
a� s

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ s� 2xÞ2

ða� sÞ2
� 1

s !
; 06 x6 a: ðA:19Þ

oz2ðxÞ
ox

¼ �A
p

Z a

s¼x

p02ðsÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� xÞða� xÞ

p ; 06 x6 a: ðA:20Þ

Substitution of

s ¼ a� s2; x ¼ a� x2 ðA:21Þ
gives

oz2ðxÞ
ox2

¼ A
p

Z x2

s2¼0

p02ðs2Þds2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � s2Þx2

p : ðA:22Þ

Comparison with Eq. (9) shows

p02ðsÞ ¼ p01ða� sÞ; ðA:23Þ
where the index 1 denotes the solution for the corresponding reflected punch of Section 4. We perform the
same operation for the pressure

Fig. 13. Reflected flat rounded punch.
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pz2ða; xÞ ¼
Z x

s¼0

p02ðsÞds
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� sÞða� xÞ

p ¼
Z a

s2¼x2

p01ðs2Þds2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðs2 � x2Þ

p ¼ pz1ða; a� xÞ: ðA:24Þ

The Muskhelishvili potential

/p2ða;wÞ ¼
Z a

s¼0

ip02ðsÞds
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw� sÞðw� aÞ

p ðA:25Þ

can be reformulated in the same way as Eq. (A.24), with w2 ¼ a� w

/p2ða;wÞ ¼
Z a�b

s¼0

�ip02ðsÞds
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� wÞða� wÞ

p ¼
Z a

s2¼b

�ip01ðs2Þds2
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðw2 � s2Þ

p ; w2 ¼ a� w: ðA:26Þ

The result is

/p2ða;wÞ ¼ �/p1ða; a� wÞ ðA:27Þ

with /p1 defined by Eq. (18).
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